fbpx
Connect with us

Technology

Mobile education & transforming the learning experience

Published

 on

Mobile education

‘Mobile education’ occurs when a student utilizes portable devices like smart phones, tablets, netbooks or handheld gaming devices, to access learning materials and systems, create content and connect with other students, teachers, learning systems and their environment. Mobile devices mean that education and learning can happen at any time and any place at a speed chosen by the learner, whilst ensuring that teachers can easily provide individual and motivated learning experiences that are relevant to location and context. Mobile learning can be individual or collaborative and transformational.

‘Mobile Education’ comes as an extension to mobile learning, including the whole range of opportunities mobile technologies and systems have to offer to improve learning, teaching, assessment and educational management. Mobile education involves access to e-books and online learning materials and portals, learner/tutor communication, e-assessment, attendance monitoring, curriculum and device management.

The mobile aspect refers to the technologies made use of by students and teachers to teach or learn in varied locations which can be connected to the mobile networks provided by network operators. This enables the use of online resources from most locations around the world, also including those beyond the reach of institutional and public wireless networks.

Currently, the technologies employed for mobile education are more often than not consumer devices such as those listed above. However, there is the potential to integrate mobile connectivity into other equipment and consequently open up fresh and innovative educational opportunities. Examples of which include, connected science equipment which is able to make readings and upload the data in real-time, as a result, saving time and increasing accuracy.

Societies and individuals around the world understand that investment in education is investment in future growth and economic wealth. Mobile connectivity, is able to offer new ways of teaching and learning that are cost-effective and can develop programmes of education that can be personalized to individuals and diverse cultural communities – as a result, driving performance and results.

In most OECD (Organisation for Economic Co-operation and Development) countries, yearly expenses on education embodies between 4% and 5% of their GDP (Gross Domestic Product) – according to an OECD report.

Growing economies, rising populations and an increase of the so-called middle classes are all aspects that are driving the demand for education in developed and emerging economies.

The education sector itself, spends a greater percentage of revenue on technology than most other industries. The rising adoption of smartphones, tablets, portable gaming machines and other handheld devices by individuals, is on the way to creating a potentially compelling learning platform that could be harnessed by a significant proportion of the global education market.

Mobile technologies can also be used collectively to enhance group-based teaching and learning either within an institution or in out-of-classroom scenarios.

Benefits of using mobile education

  • Learners have continuous access to the latest textbooks, podcasts, videos and multimedia learning experiences sourced from around the world and can choose when and where to work.
  • Assignments and coursework, combining text, images, audio and video, can be created on a mobile device and gathered together in an online portfolio by the learner.
  • Students (and educators) are able to connect with each other anywhere and at any time to discuss and explore their learning together. 
  • Students (and educators) can interact with people pursuing similar disciplines across the world thus building global communities of learning and practice.
  • Using mobile devices to introduce topics and run assessments means teachers can reduce the amount of time they spend in front of a class presenting and testing knowledge, freeing up more time for discussion and exploration.
  • Information and feedback can be sent directly to learners, teachers, tutors, parents, etc., and quickly acknowledged and followed up.
  • Online planning systems can use mobile devices to co-ordinate and send reminders about classes, workshops, events and vacations.
  • Test papers can be assessed, collated, aggregated and graded safely and securely when students are ready rather than at set times during the year.
  • For many people, especially children and teenagers, the use of mobile devices is inherently exciting, motivating and, if properly structured and supported, can help to build confidence and engage students from hard-to-reach groups and improve their performance.
  • Mobile education can be more cost-effective than traditional approaches, enabling the efficient use of accommodation and staff time, and saving money, for example, on photocopying, printing, postage, textbooks and staff travel.
  • Mobile technologies make it easier for teachers to provide more differentiated learning experiences and formative assessment for learners of different abilities and with different learning styles or preferences.
  • Mobile connected equipment can make data collection by students, inside or outside of the classroom, easier and more accurate.

We’re a diverse group of industry professionals from all corners of the world. Our desire is to provide a high-quality telecoms publication that caters to an international market, offering the latest and most relevant telecoms information to businesses, entrepreneurs and enthusiasts.

Technology

What are the Ethical Issues in Biometrics?

Published

 on

Ethical Issues in Biometrics

What is biometric identification? It is the process through which unique biological characteristics are used in biometric identification to recognize and validate a person. These characteristics can be found in facial traits, eye structures, DNA, fingerprint patterns, and even handwriting. All this data that can be gathered on an individual inevitably brings up the ethical issues in biometrics that need to be addressed.

Facial recognition and fingerprint scans were previously the domain of security, and they were utilized for identification and law enforcement. However, increasingly more business and civil applications are using biometrics authentication. Due to this increased use, it is crucial to address the moral and ethical issues in biometrics when used in the creation of new application and technology.

Applied biometrics and corporate ethics have received little empirical study despite the widespread use of biometric technologies. As a result, there is plenty of room for future study to help us better comprehend the moral consequences of adopting this technology.

This article examines the ethical concerns associated with the use of biometric technology on the use of biometrics for non-security applications as well as the moral ramifications for business.

Ethical Issues in Biometrics and Privacy

Biometric data takes privacy concerns to a whole new level that typical data gathering only touches on. Digital identities can be forged, and anonymity on the web can be maintained to a degree if you know how. Also, digital data can be deleted – if we forget that Meta (Facebook) has been revealed to store deleted data, which is an ethical concern in itself.

The problem with biometric data is that it is unforgeable, unconcealable, and permanent, You can’t change your eye structure, your fingerprint, or your facial features. Big tech companies already have your face, fingerprints, and your voice recorded and stored via current biometric authentication systems – mainly used for unlocking your phone. That data will be there forever, and there is little that people can do about it besides avoid it In the first place.

While many companies still give users the option of using a good old fashion passcode to unlock their phones, as technology as a whole tends to do, the biometric alternative is slowly gaining more traction, and will one day become the norm, as it is hard to argue its convenience and security. You can’t accidentally leave your eyeball at home or forget your fingerprint. But in the same sense, you can’t change it. If your childish curiosity while browsing the web put a black spot on your record, there’s no changing that.

Therein lies the question of who if anyone should have access to such data. Today’s tech giants have all our data in their hands, that won’t change with the spread of biometric verification methods. Indeed, it will only increase targeting capabilities.

While the collection of biometric data on its own does not necessarily mean it will be shared, monetized, or abused in any way, it never the less requires clear and strict guidelines and regulations to be implemented around it. There are too many things that can be abused by the wrong party when the ethical issues in biometrics are not taken seriously, and if such limitations are not applied stringently.


Inside Telecom provides you with an extensive list of content covering all aspects of the tech industry. Keep an eye on our Technology space to stay informed and up-to-date with our daily articles.

Continue Reading

Technology

Oppo Reno 8 and Reno 8 Pro: Specs and Comparison   

Published

 on

Oppo Reno 8

The Reno line of smartphones has always had a fantastic camera and an attractive design. The Reno 8 and 8 Pro include a 120Hz AMOLED display, the newest Dimensity chipsets, 80W fast charging, a 32-megapixel front camera, and triple 50-megapixel back cameras, among other notable features that make the Oppo Reno 8 and Reno 8 Pro high-quality yet affordable option for anyone. 

Here we compare the two latest Oppo phone series iterations and see what to expect from the flagship Oppo smartphone, and how the Oppo Reno 8 and the Oppo Reno Pro stack up against each other. 

Oppo Reno 8 Specifications 

The Oppo Reno 8 has a smaller 6.43-inch full-HD+ AMOLED display with a resolution of 1,080 by 2,400 pixels, a 90Hz refresh rate, and Corning Gorilla Glass 5 protection. It also runs Android 12 with ColorOS 12.1 on top. Additionally, the display has an 800 nits maximum brightness and a 20:09 aspect ratio. An octa-core MediaTek Dimensity 1300 SoC, up to 8GB of LPDDR4x RAM, and up to 256GB of UFS 3.1 storage are all found within the Oppo smartphone. 

The Reno 8 has a triple back camera configuration for pictures and movies, with a 50-megapixel main sensor and an f/1.8 lens as its focal point. Additionally, there is a 2-megapixel macro camera with a 112-degree field of view and an 8-megapixel sensor coupled with an f/2.2 ultra-wide angle lens. 

The Reno 8 offers 5G, 4G LTE, Wi-Fi 6, Bluetooth v5.3, GPS/A-GPS, NFC, and a USB Type-C connector as connection options. An accelerometer, light, gyroscope, magnetometer, and a proximity sensor are among the sensors on board. For biometric verification, the phone also has a fingerprint sensor hidden behind the display. A 4,500mAh battery inside the Oppo Reno 8 supports 80W Super Flash Charge quick charging. The phone weighs 179 grams and has dimensions of 160 x 73.4 x 7.67mm. 

Oppo Reno 8 Pro Specifications 

A 6.7-inch full-HD+ (1,080×2,412) AMOLED display with up to 120Hz refresh rate and Corning Gorilla Glass 5 protection is included with the Oppo Reno 8 Pro. Running on top of Android 12 is ColorOS 12.1. Additionally, the display supports HDR10+ and is certified by Netflix HD, Amazon HDR, SGS Low Motion Blur, and SGS Low Blue Light. The MediaTek Dimensity 8100-Max SoC, which has eight cores, and up to 12GB of LPDDR5 RAM power the smartphone. Storage on the Oppo Reno 8 Pro is UFS 3.1 capable of up to 256GB. 

The Oppo Reno 8 Pro boasts a triple rear camera arrangement with a 50-megapixel Sony IMX766 main sensor and an f/1.8 lens, an 8-megapixel sensor and an ultra-wide lens with an f/2.2 aperture and a 112-degree field of view, and a 2-megapixel macro camera with an f/2.4 aperture. Along with the MariSilicon X NPU, the phone’s camera will offer generally better performance in both bright and dim light. It has a 32-megapixel front-facing camera sensor with an f/2.4 lens for taking selfies and making video calls. 

The phone has 5G, 4G LTE, Wi-Fi 6, Bluetooth v5.3, GPS/A-GPS, NFC, and a USB Type-C connector as connectivity options. An accelerometer, a light meter, a gyroscope, a magnetometer, and a proximity sensor are among the sensors built into the phone. For biometric authentication, the phone also contains a fingerprint sensor underneath the touchscreen. The smartphone has a 4,500mAh battery that supports rapid charging at 80W Super Flash Charge. The phone weighs 183 grams and has dimensions of 161 x 74.2 x 7.34mm. 

Both the Oppo Reno 8 and Reno 8 Pro are prime smartphones that can fit any user’s preferences and can be considered premium smartphones on the cheaper side. If you like photography, you will be satisfied with the level of quality overall, but keep in mind that neither phone is particularly water resistant, so be careful where you take it.  


Inside Telecom provides you with an extensive list of content covering all aspects of the tech industry. Keep an eye on our Technology sections to stay informed and up-to-date with our daily articles. 

Continue Reading

Technology

Electric Cars vs Gas Cars: How do They Compare Today

Published

 on

Electric Cars vs Gas Cars

Many prefer the rumbling ‘vroom’ of a gasoline car to the soft hum of an electric vehicle, while others would rather just be satisfied in the knowledge that they are lessening their carbon footprint. Let’s look at the cold hard facts however, and compare electric cars vs gas cars

Electric Cars vs Gas Cars: Components

The amount of moving components is an important distinction between electric and gasoline-powered automobiles. While a gasoline-powered car contains hundreds of moving components, an electric vehicle just has one, the motor. Another significant distinction is that the electric car has fewer moving components. The electric car is more dependable and needs less routine maintenance. The maintenance needed for a gasoline-powered car ranges from routine oil changes, filter replacements, tune-ups, and exhaust system repairs to less frequent component replacements including water and fuel pumps, alternators, and so on.

Electric Cars vs Gas Cars: Maintenance

The expenses associated with maintaining an electric car are reduced since there are less maintenance requirements. The shaft, the only moving component of the electric motor, is extremely dependable and needs little to no maintenance. The controller and charger are electrical devices that require minimal to no maintenance because they have no moving components. Modern sealed lead acid batteries are maintenance free and utilized in electric cars nowadays. However, these batteries have a finite lifespan and will eventually need to be replaced. New batteries are being developed to increase the range of electric cars as well as the battery pack’s lifespan, perhaps eliminating the need to replace the battery pack throughout the course of the vehicle’s lifespan.

Electric Cars vs Gas Cars: Efficiency

In addition to being simpler and less expensive to repair than gasoline-powered vehicles, electric vehicles are also more cost-effective to run. The electric car will drive roughly 43 miles for $1 based on the efficiency of 3 miles/kwhr and the cost of power at 7 cents per kwhr. The gasoline-powered car will go roughly 18 miles based on the average gas mileage of 22 miles per gallon and the price of gasoline at $1.25 per gallon. As a result, an electric car may drive more than twice as far on a dollar’s worth of petrol.

Where Electric Falls Behind

There are still a number of difficulties for the owner of an electric car despite the fact that it will be less expensive to operate and maintain.

The primary issue is the restricted range offered by existing battery technology. The amount of driving distance possible utilizing the current batteries is between 50 and 150 miles. These ranges are being extended by new battery technologies, and prototypes of these batteries have shown ranges of up to 200 miles between recharging. Solar powered charging stations are being implemented in numerous places to decrease range anxiety towards electric vehicles

The lack of qualified service professionals to repair and maintain electric cars is another issue that faces their owners. A two-year associate degree program has been developed to train high school graduates to become proficient electric vehicle technicians, and training programs are being developed and made available to upgrade the conventional automotive technician with the skills needed to maintain an electric vehicle.

Infrastructure to recharge the batteries is also required. The most important component of the infrastructure for recharging already exists: electric power is accessible practically everywhere. To support the electric car, it is still necessary to guarantee that charging stations with the right sorts of service (i.e., maximum voltage and current) are placed in important areas. Plans must also be made.


Inside Telecom provides you with an extensive list of content covering all aspects of the tech industry. Keep an eye on our Technology sections to stay informed and up-to-date with our daily articles.

Continue Reading

Trending