fbpx
Connect with us

Technology

Ingenuity Mars helicopter prepares for first historical flight

Published

 on

Ingenuity Mars Helicopter

NASA is targeting no earlier than April 8 for the Ingenuity Mars Helicopter to make the first attempt at powered, controlled flight of an aircraft on another planet. Before the 4-pound (1.8-kilogram) rotorcraft can attempt its first flight, however, both it and its team must meet a series of daunting milestones.

Ingenuity remains attached to the belly of NASA’s Perseverance rover, which touched down on Mars Feb. 18. On March 21, the rover deployed the guitar case-shaped graphite composite debris shield that protected Ingenuity during landing.

The rover currently is in transit to the “airfield” where Ingenuity will attempt to fly. Once deployed, the Ingenuity Mars Helicopter will have 30 Martian days, or sols, (31 Earth days) to conduct its test flight campaign.

“When NASA’s Sojourner rover landed on Mars in 1997, it proved that roving the Red Planet was possible and completely redefined our approach to how we explore Mars. Similarly, we want to learn about the potential Ingenuity has for the future of science research,” said Lori Glaze, director of the Planetary Science Division at NASA Headquarters.

“Aptly named, Ingenuity is a technology demonstration that aims to be the first powered flight on another world and, if successful, could further expand our horizons and broaden the scope of what is possible with Mars exploration,” Glaze added.

Flying in a controlled manner on Mars is far more difficult than flying on Earth.

The Red Planet has significant gravity (about one-third that of Earth’s) but its atmosphere is just 1 percent as dense as Earth’s at the surface.

During Martian daytime, the planet’s surface receives only about half the amount of solar energy that reaches Earth during its daytime, and nighttime temperatures can drop as low as minus 130 degrees Fahrenheit (minus 90 degrees Celsius), which can freeze and crack unprotected electrical components.

To fit within the available accommodations provided by the Perseverance rover, the Ingenuity Mars Helicopter must be small. To fly in the Mars environment, it must be lightweight. To survive the frigid Martian nights, it must have enough energy to power internal heaters.

The system – from the performance of its rotors in rarified air to its solar panels, electrical heaters, and other components – has been tested and retested in the vacuum chambers and test labs of NASA’s Jet Propulsion Laboratory in Southern California.

“Every step we have taken since this journey began six years ago has been uncharted territory in the history of aircraft,” said Bob Balaram, Mars Helicopter chief engineer at JPL. “And while getting deployed to the surface will be a big challenge, surviving that first night on Mars alone, without the rover protecting it and keeping it powered, will be an even bigger one.”

The First Flight Test on Mars

Once the team is ready to attempt the first flight, Perseverance will receive and relay to Ingenuity the final flight instructions from JPL mission controllers.

Several factors will determine the precise time for the flight, including modeling of local wind patterns plus measurements taken by the Mars Environmental Dynamics Analyzer (MEDA) aboard Perseverance.

The Ingenuity Mars Helicopter will run its rotors to 2,537 rpm and, if all final self-checks look good, lift off.  After climbing at a rate of about 3 feet per second (1 meter per second), the helicopter will hover at 10 feet (3 meters) above the surface for up to 30 seconds.

Then, the Mars Helicopter will descend and touch back down on the Martian surface.

Several hours after the first flight has occurred, Perseverance will downlink Ingenuity’s first set of engineering data and, possibly, images and video from the rover’s Navigation Cameras and Mastcam-Z. From the data downlinked that first evening after the flight, the Mars Helicopter team expect to be able to determine if their first attempt to fly at Mars was a success.

“Ingenuity is an experimental engineering flight test – we want to see if we can fly at Mars,” said MiMi Aung, project manager for Ingenuity Mars Helicopter at JPL. “There are no science instruments onboard and no goals to obtain scientific information. We are confident that all the engineering data we want to obtain both on the surface of Mars and aloft can be done within this 30-sol window,” Aung added.

On the following sol, all the remaining engineering data collected during the flight, as well as some low-resolution black-and-white imagery from the helicopter’s own Navigation Camera, could be downlinked to JPL.

The third sol of this phase, the two images taken by the helicopter’s high-resolution color camera should arrive. The Ingenuity Mars Helicopter team will use all information available to determine when and how to move forward with their next test.

“Mars is hard,” said Aung. “Our plan is to work whatever the Red Planet throws at us the very same way we handled every challenge we’ve faced over the past six years – together, with tenacity and a lot of hard work, and a little Ingenuity.”

We’re a diverse group of industry professionals from all corners of the world. Our desire is to provide a high-quality telecoms publication that caters to an international market, offering the latest and most relevant telecoms information to businesses, entrepreneurs and enthusiasts.

Technology

What are the Ethical Issues in Biometrics?

Published

 on

Ethical Issues in Biometrics

What is biometric identification? It is the process through which unique biological characteristics are used in biometric identification to recognize and validate a person. These characteristics can be found in facial traits, eye structures, DNA, fingerprint patterns, and even handwriting. All this data that can be gathered on an individual inevitably brings up the ethical issues in biometrics that need to be addressed.

Facial recognition and fingerprint scans were previously the domain of security, and they were utilized for identification and law enforcement. However, increasingly more business and civil applications are using biometrics authentication. Due to this increased use, it is crucial to address the moral and ethical issues in biometrics when used in the creation of new application and technology.

Applied biometrics and corporate ethics have received little empirical study despite the widespread use of biometric technologies. As a result, there is plenty of room for future study to help us better comprehend the moral consequences of adopting this technology.

This article examines the ethical concerns associated with the use of biometric technology on the use of biometrics for non-security applications as well as the moral ramifications for business.

Ethical Issues in Biometrics and Privacy

Biometric data takes privacy concerns to a whole new level that typical data gathering only touches on. Digital identities can be forged, and anonymity on the web can be maintained to a degree if you know how. Also, digital data can be deleted – if we forget that Meta (Facebook) has been revealed to store deleted data, which is an ethical concern in itself.

The problem with biometric data is that it is unforgeable, unconcealable, and permanent, You can’t change your eye structure, your fingerprint, or your facial features. Big tech companies already have your face, fingerprints, and your voice recorded and stored via current biometric authentication systems – mainly used for unlocking your phone. That data will be there forever, and there is little that people can do about it besides avoid it In the first place.

While many companies still give users the option of using a good old fashion passcode to unlock their phones, as technology as a whole tends to do, the biometric alternative is slowly gaining more traction, and will one day become the norm, as it is hard to argue its convenience and security. You can’t accidentally leave your eyeball at home or forget your fingerprint. But in the same sense, you can’t change it. If your childish curiosity while browsing the web put a black spot on your record, there’s no changing that.

Therein lies the question of who if anyone should have access to such data. Today’s tech giants have all our data in their hands, that won’t change with the spread of biometric verification methods. Indeed, it will only increase targeting capabilities.

While the collection of biometric data on its own does not necessarily mean it will be shared, monetized, or abused in any way, it never the less requires clear and strict guidelines and regulations to be implemented around it. There are too many things that can be abused by the wrong party when the ethical issues in biometrics are not taken seriously, and if such limitations are not applied stringently.


Inside Telecom provides you with an extensive list of content covering all aspects of the tech industry. Keep an eye on our Technology space to stay informed and up-to-date with our daily articles.

Continue Reading

Technology

Oppo Reno 8 and Reno 8 Pro: Specs and Comparison   

Published

 on

Oppo Reno 8

The Reno line of smartphones has always had a fantastic camera and an attractive design. The Reno 8 and 8 Pro include a 120Hz AMOLED display, the newest Dimensity chipsets, 80W fast charging, a 32-megapixel front camera, and triple 50-megapixel back cameras, among other notable features that make the Oppo Reno 8 and Reno 8 Pro high-quality yet affordable option for anyone. 

Here we compare the two latest Oppo phone series iterations and see what to expect from the flagship Oppo smartphone, and how the Oppo Reno 8 and the Oppo Reno Pro stack up against each other. 

Oppo Reno 8 Specifications 

The Oppo Reno 8 has a smaller 6.43-inch full-HD+ AMOLED display with a resolution of 1,080 by 2,400 pixels, a 90Hz refresh rate, and Corning Gorilla Glass 5 protection. It also runs Android 12 with ColorOS 12.1 on top. Additionally, the display has an 800 nits maximum brightness and a 20:09 aspect ratio. An octa-core MediaTek Dimensity 1300 SoC, up to 8GB of LPDDR4x RAM, and up to 256GB of UFS 3.1 storage are all found within the Oppo smartphone. 

The Reno 8 has a triple back camera configuration for pictures and movies, with a 50-megapixel main sensor and an f/1.8 lens as its focal point. Additionally, there is a 2-megapixel macro camera with a 112-degree field of view and an 8-megapixel sensor coupled with an f/2.2 ultra-wide angle lens. 

The Reno 8 offers 5G, 4G LTE, Wi-Fi 6, Bluetooth v5.3, GPS/A-GPS, NFC, and a USB Type-C connector as connection options. An accelerometer, light, gyroscope, magnetometer, and a proximity sensor are among the sensors on board. For biometric verification, the phone also has a fingerprint sensor hidden behind the display. A 4,500mAh battery inside the Oppo Reno 8 supports 80W Super Flash Charge quick charging. The phone weighs 179 grams and has dimensions of 160 x 73.4 x 7.67mm. 

Oppo Reno 8 Pro Specifications 

A 6.7-inch full-HD+ (1,080×2,412) AMOLED display with up to 120Hz refresh rate and Corning Gorilla Glass 5 protection is included with the Oppo Reno 8 Pro. Running on top of Android 12 is ColorOS 12.1. Additionally, the display supports HDR10+ and is certified by Netflix HD, Amazon HDR, SGS Low Motion Blur, and SGS Low Blue Light. The MediaTek Dimensity 8100-Max SoC, which has eight cores, and up to 12GB of LPDDR5 RAM power the smartphone. Storage on the Oppo Reno 8 Pro is UFS 3.1 capable of up to 256GB. 

The Oppo Reno 8 Pro boasts a triple rear camera arrangement with a 50-megapixel Sony IMX766 main sensor and an f/1.8 lens, an 8-megapixel sensor and an ultra-wide lens with an f/2.2 aperture and a 112-degree field of view, and a 2-megapixel macro camera with an f/2.4 aperture. Along with the MariSilicon X NPU, the phone’s camera will offer generally better performance in both bright and dim light. It has a 32-megapixel front-facing camera sensor with an f/2.4 lens for taking selfies and making video calls. 

The phone has 5G, 4G LTE, Wi-Fi 6, Bluetooth v5.3, GPS/A-GPS, NFC, and a USB Type-C connector as connectivity options. An accelerometer, a light meter, a gyroscope, a magnetometer, and a proximity sensor are among the sensors built into the phone. For biometric authentication, the phone also contains a fingerprint sensor underneath the touchscreen. The smartphone has a 4,500mAh battery that supports rapid charging at 80W Super Flash Charge. The phone weighs 183 grams and has dimensions of 161 x 74.2 x 7.34mm. 

Both the Oppo Reno 8 and Reno 8 Pro are prime smartphones that can fit any user’s preferences and can be considered premium smartphones on the cheaper side. If you like photography, you will be satisfied with the level of quality overall, but keep in mind that neither phone is particularly water resistant, so be careful where you take it.  


Inside Telecom provides you with an extensive list of content covering all aspects of the tech industry. Keep an eye on our Technology sections to stay informed and up-to-date with our daily articles. 

Continue Reading

Technology

Electric Cars vs Gas Cars: How do They Compare Today

Published

 on

Electric Cars vs Gas Cars

Many prefer the rumbling ‘vroom’ of a gasoline car to the soft hum of an electric vehicle, while others would rather just be satisfied in the knowledge that they are lessening their carbon footprint. Let’s look at the cold hard facts however, and compare electric cars vs gas cars

Electric Cars vs Gas Cars: Components

The amount of moving components is an important distinction between electric and gasoline-powered automobiles. While a gasoline-powered car contains hundreds of moving components, an electric vehicle just has one, the motor. Another significant distinction is that the electric car has fewer moving components. The electric car is more dependable and needs less routine maintenance. The maintenance needed for a gasoline-powered car ranges from routine oil changes, filter replacements, tune-ups, and exhaust system repairs to less frequent component replacements including water and fuel pumps, alternators, and so on.

Electric Cars vs Gas Cars: Maintenance

The expenses associated with maintaining an electric car are reduced since there are less maintenance requirements. The shaft, the only moving component of the electric motor, is extremely dependable and needs little to no maintenance. The controller and charger are electrical devices that require minimal to no maintenance because they have no moving components. Modern sealed lead acid batteries are maintenance free and utilized in electric cars nowadays. However, these batteries have a finite lifespan and will eventually need to be replaced. New batteries are being developed to increase the range of electric cars as well as the battery pack’s lifespan, perhaps eliminating the need to replace the battery pack throughout the course of the vehicle’s lifespan.

Electric Cars vs Gas Cars: Efficiency

In addition to being simpler and less expensive to repair than gasoline-powered vehicles, electric vehicles are also more cost-effective to run. The electric car will drive roughly 43 miles for $1 based on the efficiency of 3 miles/kwhr and the cost of power at 7 cents per kwhr. The gasoline-powered car will go roughly 18 miles based on the average gas mileage of 22 miles per gallon and the price of gasoline at $1.25 per gallon. As a result, an electric car may drive more than twice as far on a dollar’s worth of petrol.

Where Electric Falls Behind

There are still a number of difficulties for the owner of an electric car despite the fact that it will be less expensive to operate and maintain.

The primary issue is the restricted range offered by existing battery technology. The amount of driving distance possible utilizing the current batteries is between 50 and 150 miles. These ranges are being extended by new battery technologies, and prototypes of these batteries have shown ranges of up to 200 miles between recharging. Solar powered charging stations are being implemented in numerous places to decrease range anxiety towards electric vehicles

The lack of qualified service professionals to repair and maintain electric cars is another issue that faces their owners. A two-year associate degree program has been developed to train high school graduates to become proficient electric vehicle technicians, and training programs are being developed and made available to upgrade the conventional automotive technician with the skills needed to maintain an electric vehicle.

Infrastructure to recharge the batteries is also required. The most important component of the infrastructure for recharging already exists: electric power is accessible practically everywhere. To support the electric car, it is still necessary to guarantee that charging stations with the right sorts of service (i.e., maximum voltage and current) are placed in important areas. Plans must also be made.


Inside Telecom provides you with an extensive list of content covering all aspects of the tech industry. Keep an eye on our Technology sections to stay informed and up-to-date with our daily articles.

Continue Reading

Trending