fbpx
Connect with us

5G

Here’s why 5G and Coronavirus are not connected

Published

 on

The consequences of the COVID-19 pandemic have given us much to think and worry about. Despite there being no validated in-depth conclusion about the health effects of 5G, there have been multiple rumors in the media lately, about conspiracy theories related to the virus. One such theory we would like to discredit is the link between 5G and the Coronavirus. 

We don’t just expect you to take our word for it, so we have done our best to explain the reasons why, from both a scientific and factual perspective. Like most conspiracy theories the 5G and COVID-19 connection comes from uninformed people online attempting to link things that are simply not connected. However, what is detrimental to this, is the power and influence of social media and its ability amplify such misguided comments.

The Coronavirus pandemic is widely reported to have originated at a market in the city of Wuhan in China, around December of last year. China also coincidently turned on some of its first 5G networks around November of last year. Somehow, those who fear the new technology or simply don’t understand it, concluded that there must be a causal link between the introduction of 5G and the emergence of COVID-19. In addition to all kinds of logical misconceptions and other weaknesses that can be found in that argument, there are numerous factual concerns to be addressed.

5G comes in different types

Firstly, it is important to note that not all 5G radio signals are the same. The two basic kind are referred to as  “sub-6 GHz” (named so because the radio frequencies that it uses are all under, or sub, 6 GHz) and “millimeter wave”, which operate at 24 GHz and above (the name comes from the fact that individual radio wavelengths are measured in millimeters). The kind that China is using at the moment is the sub-6 GHz variety.

We have used 6 GHz radio signals around the world for years for a wide variety of applications with no impact whatsoever. All 4G cell networks are using signals in this range, along with Wi-Fi and your microwave oven. Consequently, if these signals were able to cause some metabolic change in animals or people, as suggested by the conspiracy, we would have experienced their impact a long time ago. The reason we have not, is because the signal strength that these systems use, has provided no measurable negative link establish between these signals and our health, and there is no way that this could have brought about something that would have created the Coronavirus.

Where did the conspiracy come from? 

Many such theories can be traced back to the discussion that arises every couple of years about the possible health impact of using mobile telephones. According to the World Health Organisation website, studies have yet to establish any credible link between what’s called non-ionizing radiation that all forms of radio signals generate, to traditional radio signals, and human health.

To be completely impartial, these health organisations do not all together rule out the possibility of non-ionizing radiation having some impact on human health, and state that more research still needs to be done on long-term exposure to it. However, almost all of this caution is related to the possibility of causing cancer after decades of intense usage.

Before we get to the science, let us look at one of the more obvious explanations. COVID-19 exists in countries where 5G has not even been deployed yet. Let us take Iran as an example. The country has seen a huge number of cases, yet could not be further from the roll out of 5G.

The science

In the most recent scientific study from the International Commission on Non-Ionizing Radiation Protection (ICNIRP), an organization that the World Health Organisation refers to on its website in regards to radio frequency related health matters, concluded that health-related concerns for 5G overall are not a threat. More specifically, they highlighted that the signal levels generated are below their suggested settings which have shown that some networks in the UK operate at less than 1% of the organisations recommended levels. There were no concerns noted forsub-6 GHz 5G signals in the ICNIRP report. The only additions that were made in the 2020 version of the report over the original 1998 version were comments made about the exposure to frequencies above 6 GHz, which includes millimeter wave. Even here, the changes only suggest limiting long-term exposure to high-strength signals in these upper frequencies.

How 5G waves work

The physics of millimeter wave signals inherently limits the distance they can travel before they move into “nothingness”. This is why the coverage maps for mm-wave-based 5G services, that operators like Verizon have, are so limited. Rather than a single cell tower that provides miles of signal coverage as you can with sub-6 GHz signals, mmWave needs small cell towers at almost every block and these signals are not able to pass through walls and buildings. So, short of eating a %G mmWave transmitter and allowing it to run for a long period of time, you are safe.

We’re a diverse group of industry professionals from all corners of the world. Our desire is to provide a high-quality telecoms publication that caters to an international market, offering the latest and most relevant telecoms information to businesses, entrepreneurs and enthusiasts.

5G

5G vs. Wi-Fi: Harmony or Competition?

Published

 on

5G vs. Wi-Fi

The evolution of wireless technologies has been going at a steady pace. Two technologies have been dominating the market for more than two decades.  The advent of GSM or 2G as it is widely known, has allowed true mobile communications that culminated with the latest 5G evolution, while the Wireless Fidelity (Wi-Fi) standard has brought mobile internet connectivity to the premises. In the technical circles, 2G and its subsequent evolutions are classified as a wide area network (WAN) technologies while Wi-Fi is a wireless local area network (WLAN) technology. The differentiation comes from the coverage range of each. The latest 5G standard has brought versatility to cellular technologies. People have been asking whether Wi-Fi should still exist with the increasing 5G availability. In the battle of 5G vs. Wi-Fi, are these technologies considered as friends or foes?  

What are the Differences Between 5G and Wi-Fi?

Although they share many similarities, notably in terms of performance, 5G and Wi-Fi are basically two separate worlds. The philosophy surrounding their implementation and deployment is largely different.  

5G vs. Wi-Fi: Installation and Ease of Use

The difficulty in deploying these two technologies is where the difference is actually the largest in the 5G vs. Wi-Fi battle. Akin to other previous cellular technologies, the deployment of 5G networks goes through a meticulous process including the optimized planning of the network, and deployment of the planned cell-sites and other associated components. The resulting capital expenditures are significant due to the cost of purchasing the components and erecting the different cell-sites. The subsequent maintenance and upgrade costs add to the existing bill. To compensate for the costs, operators work on paid subscriptions, and other attractive services to keep their profits on the positive side.

On the other hand, Wi-Fi requires a much lower cost to deploy. All what is needed is to decide where access points are to be installed and how many of those are needed. Once acquired, the Wi-Fi network can be connected to the Internet backbone to establish end-to-end connectivity. It is worth noting that the cost of wireless access point is significantly cheaper than that an erected cell-site.

5G vs. Wi-Fi: Frequency of Operation

This is another large difference between the two technologies. 5G networks normally operate on licensed spectrum, with the exception of the CBRS band which has been recently used in the USA for private networks. This means that network operators need to go through auctions to acquire expensive licenses to run their network. The licenses fees also depend on the band of operation for the 5G network.

Wi-Fi however uses unlicensed spectrum for operation, namely in the 2.4 GHz and 5 GHz bands. From a wireless propagation perspective, the 2.4 GHz allows a wider range of operation at the expense of much lower speeds. The new Wi-Fi 6E standard should allow additional bandwidth in the 6 GHz band which should boost the perceived performance from Wi-Fi transmission.

5G vs. Wi-Fi: Range and Performance

5G clearly stand out in terms of the range of operation. The use of hundreds of geographically distributed cell-sites and the flexibility in selecting several bands of operations allow 5G networks to be accurately dimensioned for certain coverage targets. Wi-Fi networks on another side are limited to several hundreds of meters in range, depending on the frequency of operation (lower band) and transmission power (higher).

With the latest Wi-Fi 6/6E release and the nearing Wi-Fi 7 announcement, the performance of Wi-Fi is on par with 5G networks, if not better in some cases. The fact that the Wi-Fi network is connected through fiber optics to the backbone with the users normally very close to the access point, allows consistently high-performance guarantees. 5G networks from the other side suffer from the classical cellular connectivity problems. As the subscribers get farther from the cell-site, the performance drops due to the signal attenuation resulting from the increasing distance and user mobility.

Wi-Fi 6 vs. Private 5G Networks

The emerging topic of private 5G networks has pushed many to question the need for Wi-Fi networks. With private networks, enterprises and other small institutions can have a secure environment where high quality connectivity is guaranteed, and several additional use cases can even be created. The cheaper Wi-Fi network can theoretically be used to achieve the same task, expect for the lack of a seamless connection to the external networks.

In a sense, private networks have been a competitor in Wi-Fi’s territory as it was the first 5G local area network (LAN) solution, invading a category where Wi-Fi has long been the undisputable leader.

Towards Tighter Cooperation?

5G and Wi-Fi shouldn’t be seen as enemies or foes, but rather as complementary technologies. The benefits of employing both technologies at the same time are numerous. Traffic offloading is one important application for a concurrent technology use. As data services are pricey on cellular 5G networks, offloading tasks when a Wi-Fi connection is available could save the subscriber a lot of money.  The existence of a Wi-Fi network provides load balancing opportunities as the processing can be shared between the 5G and Wi-Fi networks. For instance, in the context of private LANs, local processing could be done through the Wi-Fi network while the 5G link can be used to connect different entities within the premises and maintain a connection with the external public 5G network.

Remember the Samsung Galaxy S5 from 2014?  It featured a download booster feature that combines LTE connections with the local Wi-Fi connection to boost the download speed. The impressive 5G and Wi-Fi performance guarantees can even make the user experience even better.

Summary

5G and Wi-Fi are two technologies that are so different than each other, yet they complement one another perfectly well. Looking at them as competitors is undermining to their inherent properties as each has been conceived to achieve specific goals which do not necessarily align. The controversy stirred by the emergence of private networks is certainly not enough to question the role played by Wi-Fi network. The prospective advent of Wi-Fi 7 will foster the role played by the LAN technology in synergy with the wider range 5G networks.


“Inside Telecom provides you with an extensive list of content covering all aspects of the tech industry. Keep an eye on our 5G, Telecoms, and Technology space to stay informed and up-to-date with our daily articles.”

Continue Reading

5G

5G Use Cases in Education: Breaking the Barriers in Online Leaning

Published

 on

The recent coronavirus pandemic has been a big challenge for different sectors worldwide. The health industry has been put to the limelight due the large number of casualties and the inability of healthcare systems to ramp up their resources to face the rapidly escalating situation. In the background, the pandemic tested the readiness of various sectors in facing a sudden event. The evident answer was that no one was even close to being prepared for the unforeseen disastrous results of the sanitary events. Instead, the period has been governed by experimenting, learning, upgrading, and innovating, a cycle that has been ongoing, even when the repercussions of the pandemic subsided.

The pandemic was in particular severely testing for the educational sector. Millions of students suddenly found themselves away from the classroom, with no proper plan on how to proceed with their curricula. The first and obvious resort was technology and over the top (OTT) applications such as Zoom, Microsoft Teams, WebEx, and Google Meet. Online learning platforms alleviated the burden on the educational system but at the same time highlighted the inadequacy of the existing telecom infrastructure to support a large surge in the number of users while satisfying minimum quality of service requirements. While operators worked heavily on upgrading their infrastructure, even in the middle of the pandemic, 5G use cases have emerged as lifesavers for the education sector. Not only this, but the pandemic also coincided with a worldly drive to deploy the latest technology on top of the existing 4G network.

Why 5G Can Be the Difference-Maker in Education?

Three main keywords favor the ranking of 5G as a difference-maker in the education sector: bandwidth, latency, and security. The new wireless standard has been conceived for flexibility in terms of the deployment strategy (non-standalone vs. standalone), bands of operations, and customization in terms of the implemented virtualized functions. On top of that, security policies have been notably enforced with the latest generation in mobile communications. As the role of telecommunications is primordial in education, 5G can be the solution to iron out some of the hiccups in educational content delivery. As a simple example, low 5G bands can be used to ensure proper coverage and guarantee education for most students, higher bands can be used in some places to enrich the digital experience bringing education as close as possible to the physical one.

What Are Applications Of 5G Technology in Education?

While 5G could secure the proper infrastructure for an adequate education experience, the applications of 5G in education go beyond communication service provision. The combination of advanced transmission capabilities, improved security and increasing edge computing availability unlocks different possibilities to enrich the learning experience.

Probably the most thought of feature is the inclusion of artificial intelligence (AI) and extended reality in the learning process.  AI in education brings schools to the digital age enabling smart content, tailored learning experiences, and improved class management. The use of speech recognition can further enrich the learning process.

The incorporation of extended reality, including virtual and augmented reality is key to address of the main limitations of distant learning, practical work. While most of the learning outcomes can be met through appropriate content delivery, practical work such a laboratory experiments and in-class projects is hard to deliver as the needed equipment and resources are only available in the school premises. Augmented reality can help the student manipulate equipment and interact with elements of the class in a way they could not achieve with traditional online learning platforms.

Extended reality also provides the student with an immersive learning experience. Instead of suffering from the psychological effects of sitting alone for long hours behind a computer screen, the student can be submerged in a real classroom experience where he can interact with his classmates, school/university instructor, and other elements in the classroom.

Challenges And Warnings for The Use Of 5G In Education

The typical cybersecurity threats that jeopardize any online service apply as well to 5G-based educational systems. During the latest pandemic, a large number of attacks, notably ransomware have been reported on different institutions around the world. These attacks are certainly not inherent to 5G systems but are important factors that should be catered for. The emergent usage of 5G private networking could be one solution where institutions can deploy their networks with customized reliability and security policies.

The proliferation of 5G-based education can also have an adverse effect in deepening the inequalities between countries. The quality of the education would then depend on the availability or not of 5G services in a given country.

Finally, educational methods relying on 5G shouldn’t be considered as the norm. What applies to a country and to an educational institution therein does not necessarily apply in another context?

Summary

The pandemic taught use the hard way that disruptions in any sector can be very costly, and even harder to fix. The educational sector suffered considerably from the effects of the pandemic, notably in terms of the availability and quality of education. At the same time, 5G networks were slowly expanding throughput the world. What has been damaged by the pandemic can partly be fixed using 5G systems. The technologies accompanying 5G systems provide several use cases for education, notably through the use of extended reality to provide an immersive educational experience. As with any technology, new learning paradigms shouldn’t be considered as a standard, thus emphasizing inequalities among countries.


“Inside Telecom provides you with an extensive list of content covering all aspects of the tech industry. Keep an eye on our Telecoms 5G, and Technology news space to stay informed and up-to-date with our daily articles.”

Continue Reading

5G

What Does 5G UC Mean on Android?

Published

 on

5G is the hype of the moment, not only among operators but also among big tech companies, industries, and governmental organizations. The sign displayed on any device lets users know that they are on T-Mobile’s 5G UC network instead of the regular 5G network. 

Last year, T-Mobile rolled out its 5G UC network aiming to cover more than 200 million people in the U.S. as part of its plans to deliver faster cellular connectivity to more Americans. 5G UC android is available to iPhone and Android users on the T-Mobile network and can be determined by a ‘5G UC’ sign in the status bar on smartphones.  

Earlier this year, T-Mobile USA announced a 5G milestone as they’ve reached 200 million people with their “5G Ultra Capacity” service. 

This is T-Mobile’s fastest-available 5G coverage, and it’s effectively unique to this carrier. 

A few years back, the fifth-generation technology was deployed in the U.S. With some of the biggest carriers in the market with 5G networks covering most of the country’s population. While it was limited to select metropolitan areas in the initial phase, it mostly covers various parts of the country.  

A few months after its appearance on iPhones early 2021, the 5G UC icon appears on many Android phones. 

5G UC Android Meaning 

5G UC refers to customers connected to a 5G network, which is only shown on Android phones with 5G support with smartphones or iPhones, like iPhones 12 and 13. This means that 5G UC users are connected to mid-band or millimeter wave (mmWave) 5G; for T-Mobile, it is more likely related to mid-band, as this drives up the majority of telecom operators’ faster 5G network. 

When it comes to the network’s mmWave, it is perceived as the fastest 5G band commercially available, but it’s found in a few locations, and uses a higher frequency than prior cellular networks and allows blazing-fast connections.  

This new network will only appear if you are a T-Mobile customer and notice a new “5G UC” icon in people’s Androids phones status bar. The 5G UC icon is shown when a customer is connected to T-Mobile’s Ultra Capacity 5G network. The president of technology at T-Mobile, Neville Ray, said the carrier’s customers will sometimes see “5G UC,” which means they are in an area with fast speeds with “Ultra Capacity 5G.”  

Summary 

As telcos roll out more extensive improvements that bring meaningful speed and latency increases, they’re caught in a crossfire: regular “5G” is too weak of a brand to impact. Nowadays, telecom operators are competing to get the best fifth generation technology on their phones to serve clients as efficiently as possible. 


Inside Telecomprovides you with an extensive list of content covering all aspects of the tech industry. Keep an eye on our  Telecom section to stay informed and up-to-date with our daily articles.  

Continue Reading

Trending